IntroductionMOVEMENT CHARACTERISTICS DETERMININGVOLLEYBALL SPIKE JUMP PERFORMANCE IN FEMALES

Importance of the volleyball spike jump performance

Philip X. Fuchs et al.

Philip X. Fuchs et al.

Stessing determinants in training is important

<u>Aim</u>: To identify determinants of volleyball spike jump performance in females

Philip X. Fuchs et al.

Methods Sample

Highest national division

<u>Females (n=15):</u>				
		mean	±	SD
	Age [y]	19.9	±	3.5
	Height [m]	1.79	±	0.06
	Mass [kg]	70.47	±	11.02
	Training [y]	8.4	±	3.9
	T [h/week]	11.5	±	2.2

Philip X. Fuchs et al.

Methods Instruments

12 Vicon MX-13 250Hz

- Cleveland marker set
- V3D model

Philip X. Fuchs et al.

Methods **Procedure + Analyses**

- General warm-up
- Specific warm-up (test trials)
- 10 valid spike jumps per participant
- Filtering and normalising data, calculating variables
- Normality testing, Pearson's Product Moment correlation
- 2 forward-stepwise analyses for jump height and ball velocity (without co-linearity)

Philip X. Fuchs et al.

Results Results for JUMP HEIGHT

Significant correlation results: 10 out of 42 variables

Counter movement

(RoM D knee, r=.82***) (RoM D ankle, r=.69**) (RoM ND ankle, r=.72**)

Leg extension

(max. D knee velocity, r=.85***) (max. ND knee velocity, r=.59*)

(max. D ankle velocity, r=.72**)

(max. ND ankle velocity, r=.75**)

of SALZBURG

y = $-0.21 + 4.49 \times 10^{-4} \times \text{max}$. D knee angular velocity + 0.20 × orientation step length (R²=.82***)

Arm swing

(min. ND arm-to-vertical angle, r=.61*) (max. ND shoulder velocity, r=.64*)

Approach

(orientation step length, r=.61*)

Philip X. Fuchs et al.

Results Results for BALL VELOCITY

Significant correlation results: 0 out of 22 variables

Age (r=.52)

Max. joint velocities

(pelvis rotation, r=.49) (elbow extension, r=.51)

Anthropometrics

(upper arm length, r=.44) (forearm length, r=.49)

Philip X. Fuchs et al.

Philip X. Fuchs et al.

of SALZBURG

Philip X. Fuchs et al.

University of Cassino and Southern Latium

Conclusion Future Research + Training

Jump height:

- Optimise approach
- Improve arm swing
- Engage small lower limb angles

Ball velocity:

of SALZBURG

- Assessment of coordination required
- Consider variances of striking techniques

Philip X. Fuchs et al.

